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ON SLENDER-BODY THEORY AT TRANSONIC SPEEDS !

By Kerra C. HarpEr and E. B. KLUNKER

SUMMARY

The basic ideas of the slender-body approzimation have been
applied to the nonlinear transonic-flow eguation for the velocity
potential in order to obtain some of the essential features of
slender-body theory at transonic speeds. The results of the
investigalion are presented from a unified point of view
which demonstrates the similarity of slender-body solutions in
the various Mach number ranges. The primary difference
between the resulls in the different flow regimes is represented
by a certain function which is dependent upon the body area
distribution and the stream Mach number. The transonic
area rule and some conditions concerning its va,lzdzty Jollow
from the analysis.

INTRODUCTION

.Slender-body theory originated with Munk’s report (ref. 1)
in 1924 in which the forces on slender airships were calculated
for low-speed flight. In 1938 Tsien (ref. 2) pointed out that
Munk’s airship theory also applied to the flow past-inclined
pointed bodies at supersonic speeds. The subject gained
new importance in 1946 with the appearance of Jones’s re-
port (ref. 3) in which it was shown that the basic ideas of the
slender-body approximation could be used to calculate the
forces on slender lifting wings at both subsonic and super-
sonic speeds provided that proper account was taken of
trailing-vortex sheets. Since Jones’s report, the subject has
received wide treatment. In an important paper in 1949,
Ward (ref. 4) developed a general unifying theory for the
flow past smooth slender pointed bodies at supersonic speeds.
This theory contains as special cases the lifting planar wings
of Jones and the slender nonlifting bodies treated by Von
Kfrmfn (ref. 5). The corresponding problem at subsonic
speeds has been examined by Adams and Sears (ref. 8) who
also extended the slender-body concepts to shapes which are
“not so slender.” Lighthill (ref. 7) has given a method for
calculating the flow past bodies with discontinuities in slope.
Koune (ref. 8) has developed solutions for slender wings with
thickness, and various lifting configurations have been
troated by Heaslet, Spreiter, Lomax, Ribner, and others
(refs, 9 to 13).

The slender-body theory presented in references 2 to 13
has been based upon the linearized equation for the velocity
potential, In the present report, the basic ideas of the slen-
der-body approximation are applied to the nonlinear tran-

1 Supersedes NACA Technical Note 3815 by Kelth O. Harder and E. B. Klunkelr, 1958.

sonic equation for the velocity potential in order to gain
some insight into the essential features of slender-body theory
at transonic speeds. The attempt has been made to present
the results from a unified point of view which demonstrates
the similarity of the slender-body solutions in the various
Mach number ranges.

The authors wish to acknowledge the valuable suggestions
of Dr. Adolf Busemann of the Langley Laboratory during
the preparation of this report.

SLENDER-BODY APPROXIMATION

Slender-body theory deals with that class of shapes whose
length is large compared with any lateral dimension. For
such shapes at both subsonic and supersonic speeds, the flow
in planes normal to the stream direction can be apprommnted
by solutions of Laplace’s equation. The justification is that
for very slender wings or bodies the variation of the geometri-
cal properties in the stream direction is small and, conse-
quently, the rate of change of the longitudinal component of
the velocity in the stream direction is also small. The
various slender-body solutions have all been developed on
the basis of the linearized potential equation. However, a
similar development can be made on the basis of the nonlinear
transonic equation.

The simplest differential equation for the disturbance
potential & which is generally valid at transonic speeds
(ref. 14, for example) is

where , y, and z are rectangular coordinates, M is the stream
Mach number, and v is the ratio of specific heats at constant
pressure and constant volume. With / the characteristic
length and & the characteristic width (such as the largest
lateral dimension of the configuration), the nondimensional
coordinates z;, 7, and 2z, defined by z=l, y=by; and
2z=bz, and the nondimensional potential &, defined by

2
tI>=bT ®; (z, ¥, 2:) are all of the order of 1 in the vicinity

of the configuration.
(1) becomes

() [i-2—e+onee (2o, | out 2t 21, =0 @

In this coordinate system, equation
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For sufficiently small values of the width parameter b/, the
terms involving derivatives in the stream direction can be
neglected to obtain the result that the flow approximately
satisfies Laplace’s equation

&yt &, =0 (3)

in the crossflow plane. Equation (3) represents the slender-
body approximation to equation (1).

The surface boundary condition is

0P dn dn

=gz L TE) =

where n is the outward normal to the configuration in the
crossflow plane. For slender configurations the surface
boundary condition can be integrated (ref. 4, for example)
to give

' g—i d=8"(z) (@)

where » is any contour enclosing the shape, S(z) is the cross-
sectional area distribution of the shape, and the prime de-~
notes differentiation with respect to the indicated argument.

In the slender-body approximation, the potential satisfying
equation (1) and the surface boundary condition is repre-
sented in the neighborhood of the configuration as a solution

of equation (3) plus a function of integration G(z). Thus
for r=+/y*422<p, say, where p>b,
B(z,y,2)=¢y,252)+G@)  (r=p) (5)

where ¢ is a solution of the Laplace equation in the crossflow
plane with z appearing as a parameter introduced by the
shape of the cross section at . The function ¢, being in-
dependent of the stream Mach number, can be evaluated
for an incompressible flow past the shape under considera-
tion. The function G(x) is determined from considerations
involving the complete equation for transonic flow (eq. (1))
and, consequently, is dependent upon the stream Mach
number and upon the shape of the configuration. Although
the analytic expression for G(z) at transonic speeds is not
known, it will be shown that the only geometrical property
of the configuration which influences this function is the
cross-sectional area distribution—just as at subsonic and
supersonic speeds. This property of G(z) is established
by comparing the slender-body solution with the solution
for the flow past a body of revolution. As & preliminary to
these considerations it is necessary to examine the expression
for the velocity potential in more detail.

The flow past a slender configuration is given by the solu-
tion of equation (3) satisfying the boundary conditions of the
problem and can be expressed in nondimensional terms by

sesa= [ )]

TR [(Ee e rsp)ato(3)] @
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where o is the contour bounding the cross-sectional
area of the configuration and/or the trailing-vortex
system in the y,z-plane, m is the unit outward normal,

b? b® -
stwe=r o (452) 6= ¢ (5) R=vG—0F D"

and r=+4*+2? as shown in the following sketch:

2

>~ V7

Since r is independent of the surface normal, equation (G6)
can be written as

2
2y,2=7 [ (§)log 1+

[(E-e2)eats()] ¢s0 @

where use has been made of equation (4) and where S (z)
=b?% (%) The variation of ® with the azimuth angle ¢

is contained entirely in the line integral. Two of the basic
assumptions used in the derivation of equation (7) are that
both the perturbation velocities and the perturbation-
velocity gradients in the stream direction are small. In order

to satisfy these assumptions s’/ (%) and s’’’ (%) must be

bounded. These conditions imply that equation (7) applies
only to shapes that are smooth and free from discontinuities.
Moreover, an additional restriction on the asymmetry of
the shape is sometimes required (ref. 4); namely, the radius
of curvature of the configuration in the crossflow plane must
be of the order of & where the shape is convex outward.

For & body of revolution at zero incidence the contour
integral in equation (7) vanishes and

wya=7 [« (loeita(3)] s ®

where the subscript o is used to denote values for a body of
revolution. Since a body of revolution is completely defined
in terms of the cross-sectional area distribution, this is the
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only geometric parameter which enters into g, (%) Thus,

go (—?) is of the form g, <§, 8, ) where the dependence upon

the body shape is contained in 8,. Further consideration of
the region of validity of the slender-body solution is necessary

in order to show the corresponding dependence for g (-:Zc-)

Examination of equation (7) shows that the variation of
the potential with the azimuth angle becomes vanishingly
small for 72, since the logarithm in the contour integral

is of the order b/r for g<<1. The magnitude of the terms

neglected in equation (1) are now compared with those
rotained, in order to show that r, lies within the region where
the slender-body solution is a valid approximation. The
ratio of the neglected terms [1—AMP— (v 1)1423,]®,, to any
of the remaining terms for r>>r, is of the order

(8 {s-so[iosips]
(%)TO(loga %) + 0<log ’-l‘)+0(1)]}=¢

where 0( ) denotes order of, 0(1) denotes nonsingular terms,
and the funetions g’(%—) and g’ ’(%) are considered to be

regular, From this ratio it can be seen that, for a given
Mach number and degree of approximation e, the region of
validity of the slender-body solution (r=p), measured in
terms of body widths p/b, can be made as large as desired by
Consequently, for -‘2—<<1, r<p and
the flow field external to », are nearly axisymmetric so that

s =2 [ (2) g+ o %)

In addition, for & given degree of approximation, larger
values of the width parameter /] are permitted at transonic
speeds than in the other speed ranges since the quantity
1—AL? is much larger at subsonic and supersonic speeds
than at transonic speeds.

In the region >y, the flow about a slender configuration
is nearly axisymmetric and ® must be identical to some &,
in this region. If ®,is the potential of the associated axisym-
meotric flow which gives rise to the same velocities as & for
r>ry, then, from equations (8) and (9), s,=¢ and g,=jg.
Thus, g is determined as the function g,. Since the only
geometrical property affecting g, is 8,, and since s=s,, the

suitably restricting b/L.

1<r<o) (9)

only geometrical property influencing g is s. Thus, g<%>
is of the form g(%;s) where the dependence upon the shape

of the configuration is contained entirely within s(%)-

In the preceding discussion the region of validity of the
slender-body approximation to ®, was tacitly assumed to

409194—58——050
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be at least as large as that for ®. This condition is certainly
true since the singular terms in the two solutions are the
game.

A complete discussion of the validity of the slender-body
approximation at transonic speeds would require the analytic

expression for g(%—) In the absence of this in:fo‘rma.tion,

such considerations are admittedly somewhat speculative,.
Even so, it is of interest to explore the nature of the approxi-
mation since some elementary considerations suggest that -
the slender-body solution will provide & reasonable approxi-
mation in regions where it might be expected to be poor—
in the neighborhood of weak shock waves. Because of the
nature of the slender-body solution, the flow is represented
only in a small neighborhood of the configuration, and the
shocks are represented as surfaces of discontinuity normal
to the stream direction. Moreover, for slender configura-
tions at transonic speeds, only near normal shock waves
are to be expected.

In the slender-body approximation the term [1—Af:—
(v+1)M*®,]®,, is required to be small compared with any
of the other terms in the transonic differential equation for all
values of 7 less than p. If this condition is to be satisfied
in the neighborhood of weak shock waves, the quantities

g"(il".) [1—M2—(7+1)M2@0,] (102)
and
y!(%)%ﬁ (5—7-“; -—go—a%; log —? do (10b)

must be bounded there. Since the disturbance velocities
are bounded for shapes which satisfy the assumptions of
slender-body theory, the quantities in expressions (10) will

be bounded at shock waves if ng) is bounded. The

transonic differential equation admits of solutions having
velocity discontinuities which are compatible with the
transonic approximation to the shock-wawve relations (see
appendix). Since the development in -the appendix does
not require that ¢, be singular, it seems reasonable to

suppose that ¢~ and, hence, g"(%) are bounded in the
vicinity of shock waves. In addition, the coefficient of
g”(—?) in expression (10a2) has a mean value of 0 for the

admissible normal shock waves and the contour integral
in expression (10b) vanishes at values of z/l for which the
configuration is axisymmetric.

The slender-body solutions in the various Mach number
ranges are similar in that they are all represented by equation
(7) although the function g(%) differs for the various Mach

number ranges. Ward (ref. 4) has determined the func-

tion g(%) for supersonic flows and Adams and Sears (ref. 6)
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have obtained a corresponding expression for subsonic flows.
Although an analytic expression for this function at transonic
speeds is not known, it has been established that the only

geometric property of the body influencing g(%) is the area
distribution. Moreover, the transonic similarity rule for
bodies of revolution (ref. 14 or 15) shows that g(%) can be

expressed in the form

D o) 3

where the similarity parameter is

1—M?2

('y-l-l)MZ(l)

AERODYNAMIC FORCES

Since the slender-body solutions are all represented by
equation (7), formal expressions for the aerodynamic forces
can be determined which are valid throughout the Mach
number range. Consequently, many of the essential features
. of slender-body theory at transonic speeds can be obtained
without resorting to detailed calculations.

LIFT

The most significant difference between the slender-body
solutions at subsonic, transonic, and supersonic speeds is

that the function g(%) differs in these various speed ranges.
 However, the term in the pressure arising from the function
g(%) makes only a uniform contribution to the pressure at

any value of =z and, therefore, cannot affect the lift distri-
bution or the lift. Thus, within the slender-body approxi-
mation, the lift distribution depends only upon the function
¢ and, consequently, is independent of the stream Mach
number. Several investigators (for example, Heaslet, Lo-
max, and Spreiter (ref. 9)) have previously noted that the
linearized slender-body theory gave consistent results, even
at o Mach number of 1, for planar systems.

According to slender-body theory, the lift distribution can
be obtained completely from solutions of Laplace’s equation
in the crossflow plane. Since this equation is linear, the lift
is proportional to the angle of attack even at transonic
speeds. Ward has obtained an especially simple form for
the drag due to lift in which

DL=%CKL

where « is the angle of attack measured from zero lift and
L is the lift.

DRAG

By computing the momentum change of the fluid passing
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through & cylinder enclosing the body, the drag D is deter-
mined as

DD (WY [of vtoweat [ o2a]  av

where the body extends from £=0 to £=1, o’ denotes the
contour of the body at the stern which in the case of wings
or wing-body combinations includes the trailing-vortex
sheet, ¢ is the stream dynamic pressure, and D, is the base
drag. Equation (11) is valid throughout the Mach number

range provided the appropriate forms of the function g(%)

are employed. The line integral is zero for nonlifting con-
figurations if the body is closed or if the body ends in a
cylindrical section whose elements are parallel to the stream.
The effect of Mach number (excluding the variation of base
drag with Mach number) is contained in the term involving

z
o(7)

When the subsonic form of g(%) is used in equation (11),
the correct result is obtained that the drag of nonlifting con-

figurations is zero. By using the supersonic form of g(%):

the drag varies with Mach number as [¢'(1)]? log (812—1).
For pointed bodies, or for bodies which end in a eylindrical
section, the supersonic slender-body theory indicates that
the drag is independent of Mach number. For bodies which
do not satisfy these conditions, the supersonic result indicates
that the drag approaches infinity as the Mach number
approaches 1. These results from linear theory cannot be
considered satisfactory at transonic speeds since they give a
discontinuity in the drag as the Mach number is increased
through 1; whereas experimental data show that the drag
starts to increase rapidly at & subsonic Mach number and
varies smoothly through 1. However, the few known
solutions of the nonlinear transonic-flow equation are in
good agreement with experiment in this regard. It would
be expected, therefore, that the drag rise of slender shapes
would be correctly approximated by equation (11) once the

transonic form of g(%) is known.

TRANSONIC AREA RULE

The body shape enters into the function g(%) only as a

function of the cross-sectional area distribution throughout
the Mach number range. This property of the slender-
body solutions leads to an important result even though

the analytic expression for g(%) is not known at transonic

speeds. Examination of equation (11) shows that the body
cross-sectional shape enters into the slender-body drag
expression only through the contour integral evaluated at
the stern of the configuration. For a fixed base contour,
then, the drag of nonlifting configurations depends only on
the axial distribution of the body cross-sectional area and is
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independent of the cross-sectional shape. Thus, within the
slender-body approximation, the drag of a nonlifting con-
figuration is the same as that of the associated body of
revolution having the same streamwise distribution of cross-
sectional area provided the base contour is fixed. It is in
this sense that an equivalent body of revolution is associated
with & wing-body combination. This result, often referred
to as the area rule, is especially significant at transonic
speads where larger values of the width parameter 8/l are
permitted than in other speed ranges.

The property of the dependence of the drag upon the
distribution of cross-séctional area has previously been
obtained by Ward (ref. 4) and Graham (ref. 16) for super-
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sonic flow and has been observed experimentally by Whit-~
comb (ref. 17, for example) at transonic speeds. The im-
portance of this result was first noted by Whitcomb who.
demonstrated that the area rule could be used as a basis for
the design of low-drag wing-body combinations at transonic
speeds. From the preceding development, the transonic
area rule is subject to the restrictions of slender-body theory
with the additional condition that the base contour be fixed.

LANGLEY AERONAUTICAL LLABORATORY, ‘
NaTroNAL ADvisorY COMMITTERE FOR AERONAUTICS,
Laxeray Fiewp, Va., Jenuary 18, 1954.

APPENDIX

ON SOLUTIONS OF THE TRANSONIC DIFFERENTIAL EQUATION HAVING VELOCITY DISCONTINUITIES

The tronsonic differential equation for the disturbance
velocity potential (eq. (1)) can be written as

2(,),—'_,_—’—11)11[2 %[1'—312—(74'1)M2‘1’z]2+‘15w+‘1>u=0 (A1)
From the conservation laws, the tangential velocities across
a shock wave are continuous and the normal velocity is
discontinuous. Consider first the possibility that &, is
discontinuous across s surface normal to the z-coordinate.
In order for the differential equation to admit such solutions,
the values of &, on each side of the discontinuity must give
rise to the same value for the first term in equation (Al).
With the subscripts 1 and 2 denoting quantities immediately
upstream and downstream, respectively, of the surface of
discontinuity, this condition is satisfied by

1—3P—(y+ 1M, |=—[1—M*—(v+1) M, ]

or

-2 DM g )0

which is the first-order approximation to the normal-shock
relations.

By considering discontinuities in all three velocity com-
ponents (i. e., oblique shock waves), the resulting expression
relating the disturbance velocities on each side of the dis-
continuity is identical to the first-order approximation for
the entire shock polar. Thus, the transonic differential
equation admits of solutions having velocity discontinuities
which are consistent with the first-order approximation to
the entire shock polar. Stated another way, the transonic
approximation to the differential equation and shock rela-
tions are consistent.
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